Spatial scale dependence of error in fractional component cover maps

Rangeland Ecology & Management
By: , and 

Links

Abstract

Geospatial products such as fractional vegetation cover maps often report overall, pixel-wise accuracy, but decision-making with these products often occurs at coarser scales. As such, data users often desire guidance on the appropriate spatial scale to apply these data. We worked toward establishing this guidance by assessing RCMAP (Rangeland Condition Monitoring Assessment and Projection) accuracy relative to a series of high-resolution predictions of component cover. We scale the 2-m and RCMAP predictions to various focal window sizes scales ranging from 30 to 1 500 m using focal averaging. We also evaluated variation in scaling effects on error at ecoregion and pasture (mean area of 1 050 ha) scales. Our results demonstrate increased accuracy at broader windows, across all components, and most increases in accuracy level off at ∼200–600 m scales. At the scale with highest accuracy, cross-component average correlation (r) increased by 6.5%, and root mean square error (RMSE) was reduced 46.4% relative to 30-m scale data. Scaling-related improvements to accuracy were greatest in components such as shrub and tree with more spatially heterogeneous cover and in ecoregions with more spatially heterogenous cover. When components were aggregated at the pasture scale, r increased 10% and RMSE decreased 34.3% on average relative to the 30-m scale. Our results provide empirical data on the scale dependence of error, which fractional cover data users may consider alongside their needs when using these data. Although the general principle remains that remotely sensed products are intended to address landscape-scale questions, our analysis indicates that applying data at finer than landscape spatial scales and grouping even a handful of pixels resulted in lowered error compared to pixel-level comparisons. Our results quantify the trade-offs between data granularity and error related to scale for fractional vegetation cover.

Study Area

Publication type Article
Publication Subtype Journal Article
Title Spatial scale dependence of error in fractional component cover maps
Series title Rangeland Ecology & Management
DOI 10.1016/j.rama.2025.01.004
Volume 99
Year Published 2025
Language English
Publisher Elsevier
Contributing office(s) Earth Resources Observation and Science (EROS) Center
Description 11 p.
First page 77
Last page 87
Country United States
Other Geospatial western United States
Google Analytic Metrics Metrics page
Additional publication details