Diverging trends in nitrate and phosphorus loads and yields across Illinois watersheds, 1997–2022

EarthArXiv
By: , and 

Links

Abstract

Illinois is a major contributor of nutrients to the northern Gulf of Mexico. As such, the State of Illinois initiated efforts to curb nutrient runoff over the last several decades. To evaluate progress towards these reductions, water-quality data were used to estimate incremental loads and yields of nitrate plus nitrite (NO3) and total phosphorus (TP) from 1997–2022 for 49 Illinois watersheds, defined using eight-digit hydrologic unit codes (HUC8), draining to the Mississippi River Basin. To estimate changes in NO3 and TP loads, recent loads from the period 2018 through 2022 were compared to baseline loads from 1997 through 2011. Nonpoint and point source loads, dissolved phosphorus (DP) loads, and water yields were also estimated. The sum of the incremental NO3 loads from the 49 HUC8s decreased 9% despite a 19% increase in water yield. Much of this decline occurred in HUC8s that had NO3 yields greater than 17 pounds per acre per year (lbs/acre/yr) during a 1997–2011 baseline period. The sum of all incremental HUC8 TP loads increased 25% despite a 27% reduction in point source discharge. Loads and yields were substantially larger for both NO3 and TP in the Chicago area. Outside the Chicago area, central and northern Illinois had higher NO3 yields than southern Illinois and a reverse pattern for TP where higher yields occur in southern Illinois. Nonpoint sources made up an estimated 82% and 78% of the NO3 and TP yields, respectively, across the HUC8s. In general, point source yields have mostly decreased over time, while nonpoint source yields varied depending on location and reflect the changes in the total yield.

Study Area

Publication type Preprint
Publication Subtype Preprint
Title Diverging trends in nitrate and phosphorus loads and yields across Illinois watersheds, 1997–2022
Series title EarthArXiv
DOI 10.31223/X50H77
Year Published 2025
Language English
Publisher EarthArXiv
Contributing office(s) Central Midwest Water Science Center
Description 58 p.
Country United States
State Illinois
Google Analytic Metrics Metrics page
Additional publication details