science for a changing world

National Water-Quality Assessment Program

Sources and Preparation of Data for Assessing Trends in Concentrations of Pesticides in Streams of the United States, 1992-2010

Data Series 655
U.S. Department of the Interior
U.S. Geological Survey

Cover image: Locations of stream-water sites selected for trend analysis in this study. (See figure 1 and accompanying text and tables in report.)

Sources and Preparation of Data for Assessing Trends in Concentrations of Pesticides in Streams of the United States, 1992-2010

By Jeffrey D. Martin, Michael Eberle, and Naomi Nakagaki

U.S. Department of the Interior KEN SALAZAR, Secretary

U.S. Geological Survey Marcia K. McNutt, Director

U.S. Geological Survey, Reston, Virginia: 2011

For more information on the USGS-the Federal source for science about the Earth, its natural and living resources, natural hazards, and the environment, visit http://www.usgs.gov or call 1-888-ASK-USGS.

For an overview of USGS information products, including maps, imagery, and publications, visit http://www.usgs.gov/pubprod
To order this and other USGS information products, visit http://store.usgs.gov

Any use of trade, product, or firm names is for descriptive purposes only and does not imply endorsement by the U.S. Government.

Although this report is in the public domain, permission must be secured from the individual copyright owners to reproduce any copyrighted materials contained within this report.

Suggested citation:
Martin, J.D.; Eberle, Michael; and Nakagaki, Naomi, 2011, Sources and preparation of data for assessing trends in concentrations of pesticides in streams of the United States, 1992-2010: U.S. Geological Survey Data Series 655, 23 p., 5 app.

Foreword

The U.S. Geological Survey (USGS) is committed to providing the Nation with reliable scientific information that helps to enhance and protect the overall quality of life and that facilitates effective management of water, biological, energy, and mineral resources (http://www.usgs. gov/. Information on the Nation's water resources is critical to ensuring long-term availability of water that is safe for drinking and recreation and is suitable for industry, irrigation, and fish and wildlife. Population growth and increasing demands for water make the availability of that water, measured in terms of quantity and quality, even more essential to the long-term sustainability of our communities and ecosystems.

The USGS implemented the National Water-Quality Assessment (NAWQA) Program in 1991 to support national, regional, State, and local information needs and decisions related to water-quality management and policy (http://water.usgs.gov/nawqa). The NAWQA Program is designed to answer: What is the quality of our Nation's streams and groundwater? How are conditions changing over time? How do natural features and human activities affect the quality of streams and groundwater, and where are those effects most pronounced? By combining information on water chemistry, physical characteristics, stream habitat, and aquatic life, the NAWQA Program aims to provide science-based insights for current and emerging water issues and priorities. From 1991 to 2001, the NAWQA Program completed interdisciplinary assessments and established a baseline understanding of water-quality conditions in 51 of the Nation's river basins and aquifers, referred to as Study Units (http://water.usgs.gov/nawqa/studies/ study_units.htm).

National and regional assessments are ongoing in the second decade (2001-2012) of the NAWQA Program as 42 of the 51 Study Units are selectively reassessed. These assessments extend the findings in the Study Units by determining water-quality status and trends at sites that have been consistently monitored for more than a decade, and filling critical gaps in characterizing the quality of surface water and groundwater. For example, increased emphasis has been placed on assessing the quality of source water and finished water associated with many of the Nation's largest community water systems. During the second decade, NAWQA is addressing five national priority topics that build an understanding of how natural features and human activities affect water quality, and establish links between sources of contaminants, the transport of those contaminants through the hydrologic system, and the potential effects of contaminants on humans and aquatic ecosystems. Included are studies on the fate of agricultural chemicals, effects of urbanization on stream ecosystems, bioaccumulation of mercury in stream ecosystems, effects of nutrient enrichment on aquatic ecosystems, and transport of contaminants to public-supply wells. In addition, national syntheses of information on pesticides, volatile organic compounds (VOCs), nutrients, trace elements, and aquatic ecology are continuing.

The USGS aims to disseminate credible, timely, and relevant science information to address practical and effective water-resource management and strategies that protect and restore water quality. We hope this NAWQA publication will provide you with insights and information to meet your needs, and will foster increased citizen awareness and involvement in the protection and restoration of our Nation's waters.

The USGS recognizes that a national assessment by a single program cannot address all waterresource issues of interest. External coordination at all levels is critical for cost-effective management, regulation, and conservation of our Nation's water resources. The NAWQA Program, therefore, depends on advice and information from other agencies-Federal, State, regional, interstate, Tribal, and local—as well as nongovernmental organizations, industry, academia, and other stakeholder groups. Your assistance and suggestions are greatly appreciated.

William H. Werkheiser
USGS Associate Director for Water

Contents

Foreword iii
Abstract 1
Introduction. 1
Purpose and Scope 1
Monitoring Programs for Pesticides2
National Water-Quality Assessment Program2
National Stream Quality Accounting Network 2
Sample Collection, Processing, and Field Quality Control 2
Pesticides, Analytical Method, Reporting Levels, and Laboratory Quality-Control Programs 3
Sources of Water-Quality Data 6
Review, Selection, and Preparation of Water-Quality Data 6
Selection of Stream-Water Sites for Trend Analysis 6
Precision and Rounding 16
Determination of Reporting Levels 16
Reassigning the Concentration Value for Routine Nondetections 18
Adjustment of Concentrations for Temporal Changes in Recovery 18
Identification of Samples Considered Inappropriate for Trend Analysis 20
Dataset for Trend Assessment20
Summary. 20
Acknowledgments 20
References Cited 21
Appendixes 23

Figures

1. Locations of stream-water sites selected for trend analysis .. 7
2. Example time-series plots of nondetections (of simazine) for all sites in the trend dataset showing original reporting levels; rounded reporting levels and, for routine nondetections, reporting levels reassigned to the maximum value of the long-term method detection level (maxLT-MDL); and raised reporting levels adjusted for temporal changes in recovery17
3. Example time-series plots of rounded concentrations (of simazine) in relation to the maximum value of the long-term method detection level (maxLT-MDL) for all sites in the trend dataset; modeled temporal changes in recovery; and, for detections at White River at Hazleton, IN, a comparison of recovery-adjusted versus unadjusted concentrations19

Tables

1. Pesticides selected for trend analysis
2. National Water-Quality Assessment Program Study-Unit identifiers................................ 7
3. Stream-water sites selected for trend analysis ... 8
4. Precision of pesticide data reported by the National Water Quality Laboratory 16

Abbreviations

ASCII	American Standard Code for Information Interchange
BQS	Branch of Quality Systems
DWH	(National Water-Quality Assessment Program) Data Warehouse
GCMS	gas chromatography/mass spectrometry
lowess	locally weighted scatterplot smoothing
LRL	laboratory reporting level
LT-MDL	long-term method detection level
maxLT-MDL	maximum value of the long-term method detection level MRL
minimum reporting level	
NASQAN	National Stream Quality Accounting Network
NAWQA	National Water-Quality Assessment
NWIS	National Water Information System
NWOL	National Water Quality Laboratory
OC	quality control
USGS	U.S. Geological Survey
μm	micrometer
$\mu g /$ L	microgram per liter
$<$	less than

Sources and Preparation of Data for Assessing Trends in Concentrations of Pesticides in Streams of the United States, 1992-2010

By Jeffrey D. Martin, Michael Eberle, and Naomi Nakagaki

Abstract

This report updates a previously published water-quality dataset of 44 commonly used pesticides and 8 pesticide degradates suitable for a national assessment of trends in pesticide concentrations in streams of the United States. Water-quality samples collected from January 1992 through September 2010 at stream-water sites of the U.S. Geological Survey National Water-Quality Assessment Program and the National Stream Quality Accounting Network were compiled, reviewed, selected, and prepared for trend analysis as described in this report. Samples analyzed at the U.S. Geological Survey National Water Quality Laboratory by a gas chromatography/ mass spectrometry analytical method were the most extensive in time and space and were selected for national trend analysis. The selection criteria described in the report produced a trend dataset of 21,144 pesticide samples at 212 stream and river sites.

Introduction

A primary goal of the National Water-Quality Assessment (NAWQA) Program is to assess and understand longterm trends in the quality of the Nation's streams and rivers, hereafter collectively referred to as "streams." A key aspect of water quality that presents unique data-analysis problems for trend assessment is pesticide concentrations in stream water. Analyses to date by the U.S. Geological Survey (USGS) have included assessments of trends in diazinon and other insecticides in urban streams of the northeastern and midwestern United States (Phillips and others, 2007), trends in major herbicides in agricultural streams of the Corn Belt (Sullivan and others, 2009; Vecchia and others, 2009), and trends in selected herbicides and insecticides in urban streams of the United States (Ryberg and others, 2010). Pesticide data from NAWQA and the National Stream Quality Accounting Network (NASQAN) were used for these trend assessments. These data, however, require several specific preparation steps to address potential biases from differences in sampling
strategies among sites, including different sampling periods and intensities, and changes over time in performance of the analytical method and changes in data-reporting practices.

A previous report (Martin, 2009) described the steps taken to prepare data for trend analysis and provided the resulting trend dataset for the period 1992-2006. In January 2011, similar procedures were used to obtain, screen, and prepare pesticide data for the period 1992-2010. ${ }^{1}$

Purpose and Scope

This report updates previous datasets published in Martin (2009) and briefly describes the procedures and criteria used to compile, review, select, and prepare pesticide-concentration data for trend analysis. The data are from water samples collected from January 1992 through September 2010 at NAWQA and NASQAN stream-water sites. Water samples were analyzed at the USGS National Water Quality Laboratory

[^0]The database used to store USGS water-quality data is a dynamic database. Data and coding of samples and sites may be updated by local data managers as needed. For example, site identification numbers, concentration data, or codes used to indicate data quality might change through time. Data for the entire period were recompiled to ensure that the most up-to-date information was used. In addition, recovery models must be modeled as a single time series. It would be inappropriate to merge recovery-adjusted data from Martin (2009) for 1992-2006 with recovery-adjusted data on the basis of a model for the period 2007-10.

The data user should note that some of the samples and sites in Martin (2009) are not in this report, most likely because of changes to site or sample coding. In addition, the recovery-adjusted concentrations reported in Martin (2009) often are different than the recovery-adjusted concentrations in this report. The differences are small and result from small changes in the recovery models, particularly for the period 2005-6. Differences in trend results for similar time periods using data from Martin (2009) and data from this report have not been investigated but are expected to be negligible.
(NWQL) by a gas chromatography/mass spectrometry (GCMS) method for as many as 44 commonly used pesticides and 8 pesticide degradates (hereafter referred to collectively as "pesticides"). Stream-water sites with 3 or more years of data, each with six or more samples per year, were selected for pesticide trend analysis. These and other selection criteria described in the report yielded a dataset of 21,144 pesticide samples ${ }^{2}$ at 212 sites that is suitable for a national assessment of trends in pesticide concentrations in streams of the United States.

Monitoring Programs for Pesticides

The NAWQA Program, which began monitoring for pesticides in 1992, and NASQAN, which began monitoring for pesticides in 1995, are national USGS water-quality monitoring programs that collect data suitable for a national assessment of trends in pesticide concentrations in the Nation's streams. Details about the NAWQA and NASQAN monitoring approaches can be found in Martin (2009); a brief summary of those approaches follows.

National Water-Quality Assessment Program

Monitoring of streams for the NAWQA Program initially (1992-2001) focused on assessing water-quality conditions in 51 of the Nation's river basins and aquifers, referred to as "Study Units," on a rotational schedule-20 Study Units during 1992-95, 16 during 1996-98, and 15 during 1998-2001 (Gilliom and others, 2006, p. 32). The number of stream-water sites monitored and the number of pesticide samples ${ }^{3}$ collected also followed a rotational schedule of heavier sampling during a 3- to 4 -year period of active assessment followed by a 6-year period of reduced sampling until the next period of active assessment (Gilliom and others, 1995, p. 2-5). Pesticide samples generally were collected at each site by using a combination of fixed-interval and high-flow sampling (Gilliom and others, 1995, p. 16). The active-assessment sampling involved a combination of fixed-interval or fixed-frequency sampling-collection of water samples at regular intervals, yielding a time where the number of days between samples is about the same-and additional samples collected during periods of high streamflows. For the fixed-interval sampling, two to four samples generally were collected each month during seasonal periods of high use and runoff of pesticides (typically 3 to 9 months) and one to two samples a month during other periods. High-flow sampling generally was discontinued during the 6-year period of low-level monitoring that followed the 3- to 4-year period of active assessment (Gilliom and others, 2001). Changes to the design of the NAWQA Program in

[^1]${ }^{3}$ That is, water samples for analysis of pesticides.

2001 included reduction in the number of long-term monitoring sites and an increased emphasis on regional assessments. Information on the USGS NAWQA Program is available at http://water.usgs.gov/nawqa/.

National Stream Quality Accounting Network

NASQAN was redesigned in 1995 to estimate the mass flux of pesticides and other constituents at 41 monitoring sites in the drainage basins of 4 large river systems: the Mississippi, the Rio Grande, the Columbia, and the Colorado. As in the NAWQA sampling, pesticide samples generally were collected at each site by using a combination of fixed-interval and high-flow sampling (Hooper and others, 2001, p. 1093). Also similar to the NAWQA Program, the frequency of fixed-interval sampling typically changed seasonally, with more frequent samples during the peak pesticide-runoff periods. Sampling frequency at sites downstream of major reservoirs was reduced (typically 6 samples per year), whereas the frequency at sites on free-flowing reaches was 8 to 12 fixed-interval samples per year, plus 0 to 4 high-flow samples per year (Hooper and others, 2001, p. 1093; U.S. Geological Survey, 2006). The NASQAN sampling strategy was revised in 2000 (U.S. Geological Survey, 2010); changes included reduced monitoring in the Columbia and Colorado River Basins. Information on the USGS NASQAN is available at http://water.usgs.gov/nasqan/.

Sample Collection, Processing, and Field Quality Control

NAWQA and NASQAN water samples for pesticide analyses are collected and processed by use of similar equipment and procedures. Flow-weighted, depth- and widthintegrated water samples for the analysis of pesticides were collected with Teflon-coated isokinetic samplers and processed in accordance with standard USGS methods (U.S. Geological Survey, variously dated; Shelton, 1994; Edwards and Glysson, 1999). Equipment that came in contact with sample water was constructed of Teflon, glass, aluminum, or stainless steel and was cleaned with a dilute solution of phosphate-free detergent and rinsed with deionized water and pesticide-grade methanol. Water samples were filtered through pre-combusted glass-fiber filters with a nominal 0.7 -micrometer $(\mu \mathrm{m})$ pore diameter to remove suspended particulate matter, collected in baked amber glass bottles, placed on ice in coolers, and shipped to the NWQL in Denver, Colorado, for pesticide analysis.

The quality of the stream-water pesticide data collected for the NAWQA Program was monitored by using qualitycontrol (QC) procedures presented in Mueller and others (1997). The field QC program included the collection of field blank water samples to assess potential contamination; replicate water samples to assess variability; and field matrix spikes to assess bias from the analytical method, potential pesticide degradation, or matrix effects. Contamination in field blank water samples is summarized in Martin and others
(1999). Variability in replicate water samples is summarized in Martin (2002). Pesticide recovery in laboratory reagent spikes and field matrix spikes is summarized in Martin (1999), Martin and others (2009), and Martin and Eberle (2011). NASQAN followed similar QC procedures and collected the same types of field-submitted QC samples. The NASQAN QC program is summarized in Hooper and others (2001, p. 1095).

Pesticides, Analytical Method, Reporting Levels, and Laboratory Quality-Control Programs

The NAWQA Program has used many analytical methods and multiple laboratories to measure a wide variety of pesticides in water samples, whereas NASQAN primarily has used one analytical method and laboratory. Trend analysis of pesticide data analyzed by different analytical methods or different laboratories has the potential to identify trends caused solely by differences in the performance of the analytical methods. The water-quality data review and selection procedures described in Martin (2009, appendix 1) ultimately determined that only pesticide data from a single laboratory (NWQL) and analytical method commonly used by both programs (GCMS) were sufficiently extensive in time and space for a national assessment of trends. The analytical method, GCMS, is described in this section.

All water-quality samples selected for trend analysis were analyzed by NWQL personnel using the GCMS method. Pesticides are isolated from filtered water samples by solid-phase extraction and analyzed by capillary-column GCMS with selected-ion monitoring (Zaugg and others, 1995; Lindley and others, 1996; Madsen and others, 2003). The GCMS method provides low-level analyses of as many as 44 commonly used pesticides and 8 pesticide degradates ${ }^{4}$ (table 1). The pesticide acetochlor was added to the GCMS method in 1994 (Lindley and others, 1996), and the pesticide fipronil and four degradates of fipronil were added to the GCMS method in 1999 (Madsen and others, 2003).

The GCMS analytical method does not have specified "detection limits" for each pesticide analyte. Compounds detected and conclusively identified by retention time and spectral characteristics are quantified and reported (Zaugg and

[^2]others, 1995, p. 19-21). Nondetections of pesticides (analyses that do not meet identification criteria based on retention time and spectral characteristics) are reported as less than the "routine" reporting level (for example: <0.005 microgram per liter $(\mu \mathrm{g} / \mathrm{L}))$. A small number of samples have "matrix effects" or other analytical difficulties that interfere with the measurement of pesticide retention time or spectral characteristics. Under conditions of interference, pesticides (1) cannot be identified/ detected if they are present at concentrations less than the level of interference and (2) are reported as nondetections less than a "raised" reporting level (for example: $<0.03 \mu \mathrm{~g} / \mathrm{L} ; 6$ times the routine reporting level). Nondetections at raised reporting levels indicate the maximum possible concentration of the pesticide based on the magnitude of the interference. Raised reporting levels always are greater than routine reporting levels. Raised reporting levels are sample-specific and determined by the magnitude of the interference. Routine reporting levels are the same for all samples (for a given time period) that are not affected by interference.

The types and numerical values of routine reporting levels used to report nondetections analyzed by GCMS have changed over time. Prior to October 2000, GCMS routine reporting levels were minimum reporting levels (MRLs) that were statistically determined as a function of the standard deviation of seven replicate low-level measurements (Zaugg and others, 1995, p. 21-33; U.S. Geological Survey, 1994; Oblinger Childress and others, 1999, p. 2, 3). MRLs were assessed only during the initial stages of method development and were not reassessed annually. MRLs for a pesticide typically did not change during the pre-October 2000 period. Beginning in October 2000, GCMS routine reporting levels were changed from MRLs to laboratory reporting levels (LRLs) that were statistically determined as a (more complex) function of the standard deviation of at least 24 replicate lowlevel measurements (Oblinger Childress and others, 1999). LRLs are reassessed annually, and LRLs for a single pesticide typically did change during the post-October 2000 period.

A concentration value of approximately 3 times the standard deviation of the 24 (or more) replicate low-level measurements used to determine the LRL is known as the "longterm method detection level" (LT-MDL). The maximum value of the LT-MDL for water years ${ }^{5}$ 1994-2010 (maxLT-MDL, table 1) is the concentration value used in a later section of this report to "reassign" the temporally inconsistent concentration value for routine nondetections to a uniform, temporally consistent concentration value for trend analysis. ${ }^{6}$ The types of reporting levels used by NWQL, procedures used to set reporting levels, and considerations for data analysis are discussed in Oblinger Childress and others (1999).

[^3]Table 1. Pesticides selected for trend analysis.
 value of the long-term method detection level; $\mu \mathrm{g} / \mathrm{L}$, microgram per liter; NA, not applicable; ND, not determined]

Pesticide	Parameter code	CASRN ${ }^{1}$	Pesticide class	Type of pesticide	Parent pesticide (if degradate)	Does the indicated National Water-Quality Laboratory analytical schedule analyze for the pesticide?				$\begin{gathered} \operatorname{maxLT-MDL} \\ (\mu \mathrm{g} / \mathrm{L}) \end{gathered}$
						Schedule 2001	Schedule 2010	Schedule 2003	Schedule 2033	
Acetochlor	49260	34256-82-1	Acetanilide	Herbicide	NA	Yes	Yes	Yes	Yes	0.005
Alachlor	46342	15972-60-8	Acetanilide	Herbicide	NA	Yes	Yes	Yes	Yes	0.004
Atrazine	39632	1912-24-9	Triazine	Herbicide	NA	Yes	Yes	Yes	Yes	0.004
Azinphos-methyl	82686	86-50-0	Organothiophosphate	Insecticide	NA	Yes	Yes	Yes	Yes	0.060
Benfluralin	82673	1861-40-1	Dinitroaniline	Herbicide	NA	Yes	Yes	Yes	Yes	0.007
Butylate	04028	2008-41-5	Thiocarbamate	Herbicide	NA	Yes	Yes	No	No	0.002
Carbaryl	82680	63-25-2	Carbamate	Insecticide	NA	Yes	Yes	Yes	Yes	0.10
Carbofuran	82674	1563-66-2	Carbamate	Insecticide	NA	Yes	Yes	No	Yes	0.030
Chlorpyrifos	38933	2921-88-2	Organothiophosphate	Insecticide	NA	Yes	Yes	Yes	Yes	0.005
Cyanazine	04041	21725-46-2	Triazine	Herbicide	NA	Yes	Yes	No	Yes	0.020
Dacthal®	82682	1861-32-1	Chlorobenzoic acid ester	Herbicide	NA	Yes	Yes	Yes	Yes	0.004
p, p '-DDE	34653	72-55-9	Organochlorine	Degradate	DDT	Yes	Yes	No	No	0.001
Deethylatrazine	04040	6190-65-4	Triazine	Degradate	Atrazine	Yes	Yes	Yes	Yes	0.007
Desulfinylfipronil	62170	ND	Phenyl pyrazole	Degradate	Fipronil	Yes	Yes	Yes	Yes	0.006
Desulfinylfipronil amide	62169	ND	Phenyl pyrazole	Degradate	Fipronil	Yes	Yes	Yes	Yes	0.015
Diazinon	39572	333-41-5	Organothiophosphate	Insecticide	NA	Yes	Yes	Yes	Yes	0.003
Dieldrin	39381	60-57-1	Organochlorine	Insecticide	NA	Yes	Yes	Yes	Yes	0.004
2,6-Diethylaniline	82660	579-66-8	Aniline	Degradate	Alachlor	Yes	Yes	Yes	Yes	0.003
Disulfoton	82677	298-04-4	Organothiophosphate	Insecticide	NA	Yes	Yes	No	Yes	0.020
EPTC	82668	759-94-4	Thiocarbamate	Herbicide	NA	Yes	Yes	No	Yes	0.003
Ethalfluralin	82663	55283-68-6	Dinitroaniline	Herbicide	NA	Yes	Yes	No	No	0.005
Ethoprophos	82672	13194-48-4	Organothiophosphate	Insecticide	NA	Yes	Yes	No	Yes	0.008
Fipronil	62166	120068-37-3	Phenyl pyrazole	Insecticide	NA	Yes	Yes	Yes	Yes	0.020
Fipronil sulfide	62167	120067-83-6	Phenyl pyrazole	Degradate	Fipronil	Yes	Yes	Yes	Yes	0.006
Fipronil sulfone	62168	120068-36-2	Phenyl pyrazole	Degradate	Fipronil	Yes	Yes	Yes	Yes	0.012
Fonofos	04095	944-22-9	Organothiophosphate	Insecticide	NA	Yes	Yes	Yes	Yes	0.005
alpha-HCH	34253	319-84-6	Organochlorine	Degradate	gamma- HCH	Yes	Yes	No	No	0.004
gamma- HCH	39341	58-89-9	Organochlorine	Insecticide	NA	Yes	Yes	No	No	0.007
Linuron	82666	330-55-2	Urea	Herbicide	NA	Yes	Yes	No	No	0.030

Table 1. Pesticides selected for trend analysis.-Continued
 value of the long-term method detection level; $\mu \mathrm{g} / \mathrm{L}$, microgram per liter; NA, not applicable; ND, not determined]

Pesticide	Parameter code	CASRN ${ }^{1}$	Pesticide class	Type of pesticide	Parent pesticide (if degradate)	Does the indicated National Water-Quality Laboratory analytical schedule analyze for the pesticide?				maxLT-MDL ($\mu \mathrm{g} / \mathrm{L}$)
						$\begin{gathered} \text { Schedule } \\ 2001 \end{gathered}$	Schedule 2010	$\begin{aligned} & \text { Schedule } \\ & 2003 \end{aligned}$	$\begin{aligned} & \text { Schedule } \\ & 2033 \end{aligned}$	
Malathion	39532	121-75-5	Organothiophosphate	Insecticide	NA	Yes	Yes	Yes	Yes	0.014
Metolachlor	39415	51218-45-2	Acetanilide	Herbicide	NA	Yes	Yes	Yes	Yes	0.010
Metribuzin	82630	21087-64-9	Triazine	Herbicide	NA	Yes	Yes	Yes	Yes	0.014
Molinate	82671	2212-67-1	Thiocarbamate	Herbicide	NA	Yes	Yes	No	Yes	0.002
Napropamide	82684	15299-99-7	Amide	Herbicide	NA	Yes	Yes	No	No	0.009
Parathion	39542	56-38-2	Organothiophosphate	Insecticide	NA	Yes	Yes	No	No	0.010
Parathion-methyl	82667	298-00-0	Organothiophosphate	Insecticide	NA	Yes	Yes	Yes	Yes	0.008
Pebulate	82669	1114-71-2	Thiocarbamate	Herbicide	NA	Yes	Yes	No	No	0.008
Pendimethalin	82683	40487-42-1	Dinitroaniline	Herbicide	NA	Yes	Yes	Yes	Yes	0.011
cis-Permethrin	82687	54774-45-7	Pyrethroid	Insecticide	NA	Yes	Yes	Yes	Yes	0.007
Phorate	82664	298-02-2	Organothiophosphate	Insecticide	NA	Yes	Yes	Yes	Yes	0.027
Prometon	04037	1610-18-0	Triazine	Herbicide	NA	Yes	Yes	Yes	Yes	0.007
Propachlor	04024	1918-16-7	Acetanilide	Herbicide	NA	Yes	Yes	No	No	0.012
Propanil	82679	709-98-8	Amide	Herbicide	NA	Yes	Yes	No	Yes	0.007
Propargite	82685	2312-35-8	Sulfite ester	Acaricide	NA	Yes	Yes	No	Yes	0.020
Propyzamide	82676	23950-58-5	Amide	Herbicide	NA	Yes	Yes	Yes	Yes	0.002
Simazine	04035	122-34-9	Triazine	Herbicide	NA	Yes	Yes	Yes	Yes	0.006
Tebuthiuron	82670	34014-18-1	Urea	Herbicide	NA	Yes	Yes	Yes	Yes	0.014
Terbacil	82665	5902-51-2	Uracil	Herbicide	NA	Yes	Yes	No	No	0.020
Terbufos	82675	13071-79-9	Organothiophosphate	Insecticide	NA	Yes	Yes	Yes	Yes	0.009
Thiobencarb	82681	28249-77-6	Thiocarbamate	Herbicide	NA	Yes	Yes	No	Yes	0.008
Triallate	82678	2303-17-5	Thiocarbamate	Herbicide	NA	Yes	Yes	No	No	0.003
Trifluralin	82661	1582-09-8	Dinitroaniline	Herbicide	NA	Yes	Yes	Yes	Yes	0.009

As previously explained, low-level detections of pesticides analyzed by GCMS are not censored at the reporting level. All detections meeting identification criteria are quantified and reported, although concentrations less than the routine reporting level are reported with an "E" remark to indicate that the concentration-but not the presence-is estimated. In addition, concentrations less than the lowest calibration standard or concentrations extrapolated above the highest calibration standard also are remarked "E" (Oblinger Childress and others, 1999, p. 8-10). Any detection of the pesticides azinphos-methyl, carbaryl, carbofuran, deethylatrazine, or terbacil are reported with an "E" remark, regardless of concentration, because these pesticides have lower or more variable recovery than other pesticides analyzed by the method (Zaugg and others, 1995, p. 35). Data users should infer that the uncertainty in the measured concentration (the precision of the concentration-not uncertainty in detection) for a concentration remarked " E " is expected to be greater than that for a concentration without an " E " remark.

QC procedures for analytical data produced by the NWQL are described at http://nwql.usgs.gov/quality.shtml. Laboratory quality-control charts and statistics for the pesticide data provided in this report (since 2001) are available at http://nwql.usgs.gov/Public/PublicQAQC/AggregatedCharts. $h t m l$. In addition to internal QC programs used by the NWQL, the quality of the analytical data produced by the NWQL is independently monitored by the USGS Branch of Quality Systems (BQS) (http://bqs.usgs.gov/). Blind QC samples are made by BQS and submitted to the NWQL as routine environmental samples. The bias and variability of analytical results are reported for each pesticide by schedule (http://bqs.usgs. gov/obsp/). The frequency and magnitude of contamination also is measured (http://bqs.usgs.gov/bbp/).

Sources of Water-Quality Data

Water-quality data collected for both the NAWQA Program and NASQAN are stored in USGS National Water Information System (NWIS) databases and are periodically aggregated into the NAWQA Data Warehouse (DWH) (http:/water. usgs.gov/nawqa/data). Data aggregations for both monitoring programs are subjected to program-specific automated datachecking routines intended to identify erroneous or incomplete coding and missing or unusual pesticide concentrations.

Water-quality data were provided by the DWH (Jessica L. Thompson, Information Technology Specialist, U.S. Geological Survey, written commun., January 19, 2011). Any waterquality sample in the DWH with analyses of one or more pesticides of interest was retrieved along with selected supporting sample information.

Review, Selection, and Preparation of Water-Quality Data

The principal steps in data review for trend analysis were to (1) identify analytical method and schedule, (2) verify sample-level coding, (3) exclude inappropriate samples or results, (4) review pesticide detections per sample, (5) review high pesticide concentrations, and (6) review the spatial and temporal extent of pesticide data and selection of analytical methods for trend analysis. A detailed discussion of datareview procedures is provided in Martin (2009, appendix 1).

The principal steps in data preparation for trend analysis were to (1) select stream-water sites for trend analysis, (2) round concentrations to a consistent level of precision for the concentration range, (3) identify routine reporting levels used to report nondetections unaffected by matrix interference, (4) reassign the concentration value for routine nondetections to the maxLT-MDL, (5) adjust concentrations to compensate for temporal changes in bias of recovery of the GCMS analytical method, and (6) identify samples considered inappropriate for trend analysis. Details of these procedures are provided in the following sections.

Selection of Stream-Water Sites for Trend Analysis

As stated previously, only samples analyzed by the GCMS method at NWQL were selected for trend analysis (Martin 2009 , appendix 1). Stream-water sites with at least 3 water years of data (and at least six GCMS samples per water year) were deemed the minimum data requirements to be potentially useful for pesticide trend analysis. The 212 stream-water sites ${ }^{7}$ that met these minimum data requirements are shown in figure 1 and listed in table 3. NAWQA Program Study-Unit identifiers used in table 3 are explained in table 2.

[^4]

Figure 1. Locations of stream-water sites selected for trend analysis.

Table 2. National Water-Quality Assessment Program Study-Unit identifiers (NASQAN sites are coded as "NSQN.")

Identifier	Study Unit name	Identifier	
ACAD	Acadian-Pontchartrain Drainages	PODL	Potomac River Basin and Delmarva Peninsula
ACFB	Apalachicola-Chattahoochee-Flint River Basin	PUGT	Puget Sound Basin
ALBE	Albemarle-Pamlico Drainage Basin	REDN	Red River of the North Basin
CAZB	Central Arizona Basins	RIOG	Rio Grande Valley
CCYK	Central Columbia Plateau-Yakima River Basin	SACR	Sacramento River Basin
CNBR	Central Nebraska Basins	SANA	Santa Ana Basin
CONN	Connecticut, Housatonic, and Thames River Basins	SANJ	San Joaquin-Tulare Basins
DELR	Delaware River Basin	SANT	Santee River Basin and Coastal Drainages
EIWA	Eastern Iowa Basins	SCTX	South-Central Texas
GAFL	Georgia-Florida Coastal Plain	SPLT	South Platte River Basin
GRSL	Great Salt Lake Basins	TENN	Tennessee River Basin
HDSN	Hudson River Basin	TRIN	Trinity River Basin
LERI	Lake Erie-Lake Saint Clair Drainages	UCOL	Upper Colorado River Basin
LINJ	Long Island-New Jersey Coastal Drainages	Upper Illinois River Basin	
LIRB	Lower Illinois River Basin	UMIS	Upper Mississippi River Basin
LSUS	Lower Susquehanna River Basin	USNK	Upper Snake River Basin
MISE	Mississippi Embayment	WHMI	White, Great Miami, and Little Miami River Basins
MOBL	Mobile River Basin	WILL	Willamette Basin
NECB	New England Coastal Basins	Western Lake Michigan Drainages	
NVBR	Las Vegas Valley Area and Carson and Truckee River Basins	Yellowstone River Basin	
OZRK	Ozark Plateaus		

Table 3. Stream-water sites selected for trend analysis.
[Drainage areas rounded to 0.1 square mile; ag, greater than 50 percent agricultural land and less than or equal to 5 percent urban land; undev, less than or equal to 25 percent agricultural land and less than tot, total drainage basin; con, contributing drainage basin; both, total and contributing drainage basins are the same; unk, the type of drainage basin is not known. See appendix 3 for additional site and basin information.]

Fig. 1 index number	Station number	Study Unit ${ }^{1}$ abbreviation (explained in table 2)	Number of samples considered appropriate for trend analysis	Drainage basin landuse class	Drainage area (square miles)	Type of drainage basin	Name of stream-water site
1	01100000	NECB	23	mixed	4,626.8	tot	Merrimack River below Concord River at Lowell, MA
2	01102500	NECB	72	urb	23.1	con	Aberjona River at Winchester, MA
3	01104615	NECB	72	urb	271.4	tot	Charles River above Watertown Dam at Watertown, MA
4	01170970	CONN	31	undev	0.9	both	Hatfield Reservoir near West Hatfield, MA
5	01184000	CONN	126	mixed	9,671.7	both	Connecticut River at Thompsonville, CT
6	01209710	CONN	214	urb	32.9	both	Norwalk River at Winnipauk, CT
7	01349150	HDSN	197	mixed	59.8	both	Canajoharie Creek near Canajoharie, NY
8	01356190	HDSN	134	urb	15.4	both	Lisha Kill near Niskayuna, NY
9	01357500	HDSN	180	mixed	3,518.7	both	Mohawk River at Cohoes, NY
10	01403300	LINJ	183	urb	800.9	both	Raritan River at Queens Bridge at Bound Brook, NJ
11	01403900	LINJ	93	urb	48.5	both	Bound Brook at Middlesex, NJ
12	01434000	DELR	26	undev	3,076.3	both	Delaware River at Port Jervis, NY
13	01451800	DELR	32	mixed	52.4	both	Jordan Creek near Schnecksville, PA
14	01454700	DELR	30	mixed	1,358.7	both	Lehigh River at Glendon, PA
15	01463500	DELR	107	mixed	6,786.6	both	Delaware River at Trenton, NJ
16	01464907	DELR	93	urb	27.9	both	Little Neshaminy Creek at Valley Road near Neshaminy, PA
17	01467150	DELR	31	urb	18.1	both	Cooper River at Haddonfield, NJ
18	01470779	DELR	51	mixed	69.2	both	Tulpehocken Creek near Bernville, PA
19	01472157	DELR	78	mixed	58.8	both	French Creek near Phoenixville, PA
20	01474500	DELR	69	mixed	1,890.3	both	Schuylkill River at Philadelphia, PA
21	01477120	DELR	30	mixed	26	both	Raccoon Creek near Swedesboro, NJ
22	01493112	PODL	51	ag	6.6	both	Chesterville Branch near Crumpton, MD
23	01493500	PODL	52	ag	12.8	both	Morgan Creek near Kennedyville, MD
24	01555400	LSUS	92	mixed	44.7	both	East Mahantango Creek at Klingerstown, PA
25	01559795	LSUS	26	undev	16.7	both	Bobs Creek near Pavia, PA
26	01571490	LSUS	66	urb	12.6	both	Cedar Run at Eberlys Mill, PA
27	01578310	PODL	93	mixed	27,086.4	both	Susquehanna River at Conowingo, MD
28	01621050	PODL	186	mixed	14.4	both	Muddy Creek at Mount Clinton, VA
29	01645495	PODL	24	mixed	11,464.4	both	Potomac River near Great Falls, VA

Table 3. Stream-water sites selected for trend analysis.-Continued

Number of samples considered appropriate for trend analysis	Drainage basin land- use class	Drainage area (square miles)	Type of drainage basin

 $\underset{\substack{\text { cum } \\ \text { bonh }}}{ }$ bont $\frac{1}{8}$ $\frac{1}{8}$ bont boan高皃 롤 bow

 Potomac River at Chain Bridge at Washington, DC
Accotink Creek near Annandale, VA
Neuse River above US 70 at Smithfield, NC
Swift Creek near Apex, NC
Neuse River at Kinston, NC
Contentnea Creek at Hookerton, NC
Gills Creek at Columbia, SC
Cow Castle Creek near Bowman, SC
Edisto River near Givhans, SC
Tucsawhatchee Creek near Hawkinsville, GA
Altamaha River near Everett City, GA
Hillsboro Canal at S-6 near Shawano, FL
Peace River at Arcadia, FL
Rocky Creek at Highway 587 at Citrus Park, FL
Little River at Upper Ty Ty Road near Tifton, GA
Withlacoochee River at US 84 near Quitman, GA
Lafayette Creek at Miccosukee Road at Tallahassee, FL
Sope Creek near Marietta, GA
Snake Creek near Whitesburg, GA
Chattahoochee River near Whitesburg, GA
White Oak Creek at Cannon Road near Raymond, GA
Lime Creek near Cobb, GA
Apalachicola River near Sumatra, FL
Three Mile Branch at North Boulevard at Montgomery, AL
Cahaba Valley Creek at Cross Creek Road at Pelham, AL
Cahaba River at Centreville, AL
Alabama River at Claiborne, AL
Bogue Chitto Creek near Memphis, AL
Tombigbee River below Coffeeville Dam near Coffeeville, AL Potomac River at Chain Bridge at Washington, DC
Accotink Creek near Annandale, VA
Neuse River above US 70 at Smithfield, NC
Swift Creek near Apex, NC
Neuse River at Kinston, NC
Contentnea Creek at Hookerton, NC
Gills Creek at Columbia, SC
Cow Castle Creek near Bowman, SC
Edisto River near Givhans, SC
Tucsawhatchee Creek near Hawkinsville, GA
Altamaha River near Everett City, GA
Hillsboro Canal at S-6 near Shawano, FL
Peace River at Arcadia, FL
Rocky Creek at Highway 587 at Citrus Park, FL
Little River at Upper Ty Ty Road near Tifton, GA
Withlacoochee River at US 84 near Quitman, GA
Lafayette Creek at Miccosukee Road at Tallahassee, FL
Sope Creek near Marietta, GA
Snake Creek near Whitesburg, GA
Chattahoochee River near Whitesburg, GA
White Oak Creek at Cannon Road near Raymond, GA
Lime Creek near Cobb, GA
Apalachicola River near Sumatra, FL
Three Mile Branch at North Boulevard at Montgomery, AL
Cahaba Valley Creek at Cross Creek Road at Pelham, AL
Cahaba River at Centreville, AL
Alabama River at Claiborne, AL
Bogue Chitto Creek near Memphis, AL
Tombigbee River below Coffeeville Dam near Coffeeville, AL

 Name of stream-water site
 \square
Table 3. Stream-water sites selected for trend analysis.-Continued
[Drainage areas rounded to 0.1 square mile; ag, greater than 50 percent agricultural land and less than or equal to 5 percent urban land; undev, less than or equal to 25 percent agricultural land and less than tot, total drainage basin; con, contributing drainage basin; both, total and contributing drainage basins are the same; unk, the type of drainage basin is not known. See appendix 3 for additional site and basin information.]

Fig. 1 index number	Station number	Study Unit' abbreviation (explained in table 2)	Number of samples considered appropriate for trend analysis	Drainage basin land- use class	Drainage area (square miles)	Type of drainage basin
59	02470500	NSQN	35	mixed	$42,816.1$	both

Table 3. Stream-water sites selected for trend analysis.-Continued
[Drainage areas rounded to 0.1 square mile; ag, greater than 50 percent agricultural land and less than or equal to 5 percent urban land; undev, less than or equal to 25 percent agricultural land and less than or equal to 5 percent urban land; urb, greater than 25 percent urban land and less than or equal to 25 percent agricultural land; mixed, all other combinations of agricultural, urban, and undeveloped land; tot, total drainage basin; con, contributing drainage basin; both, total and contributing drainage basins are the same; unk, the type of drainage basin is not known. See appendix 3 for additional site and basin

Number of samples considered appropriate for trend analysis	Drainage basin land- use class	Drainage area (square miles)	Type of drainage basin

 Old Mans Creek near Iowa City, IA
English River at Riverside, IA
Cedar River near Carville, IA
West Fork Cedar River at Finchford, IA
Flood Creek near Powersville, IA
Wolf Creek near Dysart, IA
Cedar River near Conesville, IA
Iowa River at Wapello, IA
Skunk River at Augusta, IA Old Mans Creek near Iowa City, IA
English River at Riverside, IA
Cedar River near Carville, IA
West Fork Cedar River at Finchford, IA
Flood Creek near Powersville, IA
Wolf Creek near Dysart, IA
Cedar River near Conesville, IA
Iowa River at Wapello, IA
Skunk River at Augusta, IA Old Mans Creek near Iowa City, IA
English River at Riverside, IA
Cedar River near Carville, IA
West Fork Cedar River at Finchford, IA
Flood Creek near Powersville, IA
Wolf Creek near Dysart, IA
Cedar River near Conesville, IA
Iowa River at Wapello, IA
Skunk River at Augusta, IA Old Mans Creek near Iowa City, IA
English River at Riverside, IA
Cedar River near Carville, IA
West Fork Cedar River at Finchford, IA
Flood Creek near Powersville, IA
Wolf Creek near Dysart, IA
Cedar River near Conesville, IA
Iowa River at Wapello, IA
Skunk River at Augusta, IA Old Mans Creek near Iowa City, IA
English River at Riverside, IA
Cedar River near Carville, IA
West Fork Cedar River at Finchford, IA
Flood Creek near Powersville, IA
Wolf Creek near Dysart, IA
Cedar River near Conesville, IA
Iowa River at Wapello, IA
Skunk River at Augusta, IA Old Mans Creek near Iowa City, IA
English River at Riverside, IA
Cedar River near Carville, IA
West Fork Cedar River at Finchford, IA
Flood Creek near Powersville, IA
Wolf Creek near Dysart, IA
Cedar River near Conesville, IA
Iowa River at Wapello, IA
Skunk River at Augusta, IA
Salt Creek
Des Plaines River at Riverside, IL
Illinois River at Ottawa, IL
Sangamon River at Monticello, IL
Illinois River at Valley City, IL Mississippi River below Grafton, IL
 Mississippi River below Lock and Dam 2 at Hastings, MN
Mississippi River at Clinton, IA Wapsipinicon River near Tripoli, IA
Wapsipinicon River near De Witt, IA
Iowa River near Rowan, IA Wapsipinicon River near Tripoli, IA
Wapsipinicon River near De Witt, IA
Iowa River near Rowan, IA South Fork Iowa River near New Providence, IA South Fork Iowa River near New Providence, IA
Iowa River at Marengo, IA Old Mans Creek near Iowa City, IA
English River at Riverside, IA
Cedar River near Carville, IA
West Fork Cedar River at Finchford, IA
Flood Creek near Powersville, IA
Wolf Creek near Dysart, IA
Cedar River near Conesville, IA
Iowa River at Wapello, IA
Skunk River at Augusta, IA Old Mans Creek near Iowa City, IA
English River at Riverside, IA
Cedar River near Carville, IA
West Fork Cedar River at Finchford, IA
Flood Creek near Powersville, IA
Wolf Creek near Dysart, IA
Cedar River near Conesville, IA
Iowa River at Wapello, IA
Skunk River at Augusta, IA Maumee River at Waterville, OH
St. Lawrence River at Cornwall, Ontario, near Massena, NY
Turtle River at Turtle River State Park near Arvilla, ND
Red River of the North at Pembina, ND
Shingle Creek at Queen Avenue at Minneapolis, MN
Little Cobb River near Beauford, MN
Mississippi River below Lock and Dam 2 at Hastings, MN Sugar Creek at Milford, IL Illinois River at Ottawa, IL
Name of stream-water site
Table 3. Stream-water sites selected for trend analysis.-Continued
[Drainage areas rounded to 0.1 square mile; ag, greater than 50 percent agricultural land and less than or equal to 5 percent urban land; undev, less than or equal to 25 percent agricultural land and less than or equal to 5 percent urban land; urb, greater than 25 percent urban land and less than or equal to 25 percent agricultural land; mixed, all other combinations of agricultural, urban, and undeveloped land; tot, total drainage basin; con, contributing drainage basin; both, total and contributing drainage basins are the same; unk, the type of drainage basin is not known. See appendix 3 for additional site and basin
Type of

Table 3. Stream-water sites selected for trend analysis.-Continued

Fig. 1 index number	Station number	Study Unit ${ }^{1}$ abbreviation (explained in table 2)	Number of samples considered appropriate for trend analysis	Drainage basin landuse class	Drainage area (square miles)	Type of drainage basin	Name of stream-water site
144	07379960	ACAD	86	urb	15.1	both	Dawson Creek at Bluebonnet Boulevard near Baton Rouge, LA
145	07381495	NSQN	207	mixed	93,510.9	both	Atchafalaya River at Melville, LA
146	07381590	NSQN	55	mixed	2,178	unk	Wax Lake Outlet at Calumet, LA
147	07381600	NSQN	65	mixed	94,620.9	unk	Atchafalaya River at Morgan City, LA
148	08010000	ACAD	41	mixed	142.4	both	Bayou Des Cannes near Eunice, LA
149	08012150	ACAD	97	mixed	1,380.8	both	Mermentau River at Mermentau, LA
150	08012470	ACAD	72	mixed	296	both	Bayou Lacassine near Lake Arthur, LA
151	08014500	ACAD	40	mixed	503.9	both	Ouiska Chitto Creek near Oberlin, LA
152	08051500	TRIN	50	undev	294.8	both	Clear Creek near Sanger, TX
153	08057200	TRIN	174	urb	66.8	both	White Rock Creek at Greenville Avenue at Dallas, TX
154	08057410	TRIN	193	mixed	6,265.2	both	Trinity River below Dallas, TX
155	08064100	TRIN	91	mixed	807	both	Chambers Creek near Rice, TX
156	08116650	NSQN	32	mixed	45,415	tot	Brazos River near Rosharon, TX
157	08178800	SCTX	117	urb	195.3	both	Salado Creek at Loop 13 at San Antonio, TX
158	08181800	SCTX	77	urb	1,748.4	both	San Antonio River near Elmendorf, TX
159	08364000	RIOG	159	undev	29,939.1	con	Rio Grande at El Paso, TX
159	08364000	RIOG	159	undev	33,385.2	tot	Rio Grande at El Paso, TX
160	08374200	NSQN	56	undev	72,974.7	both	Rio Grande below Rio Conchos near Presidio, TX
161	08377200	NSQN	102	undev	95,115.4	both	Rio Grande at Foster Ranch near Langtry, TX
162	08447410	NSQN	101	undev	44,173.8	tot	Pecos River near Langtry, TX
163	08450900	NSQN	57	undev	167,199.3	both	Rio Grande below Amistad Dam near Del Rio, TX
164	08459200	NSQN	83	undev	177,072.8	both	Rio Grande at Pipeline Crossing below Laredo, TX
165	08461300	NSQN	55	undev	206,915.7	both	Rio Grande below Falcon Dam, TX
166	08470400	NSQN	106	mixed	345.4	both	Arroyo Colorado at Harlingen, TX
167	08475000	NSQN	102	undev	215,270.8	both	Rio Grande near Brownsville, TX
168	09163500	UCOL	79	undev	17,866.5	both	Colorado River near Colorado-Utah State Line
169	09180500	NSQN	47	undev	23,973.1	both	Colorado River near Cisco, UT
170	09315000	NSQN	46	undev	40,799.4	both	Green River at Green River, UT
171	09379500	NSQN	41	undev	22,993.1	both	San Juan River near Bluff, UT

Table 3. Stream-water sites selected for trend analysis.-Continued

 information.]

Fig. 1 index number	Station number	Study Unit ${ }^{1}$ abbreviation (explained in table 2)	Number of samples considered appropriate for trend analysis	Drainage basin landuse class	Drainage area (square miles)	Type of drainage basin	Name of stream-water site
172	09380000	NSQN	25	undev	108,137	both	Colorado River at Lees Ferry, AZ
173	09404200	NSQN	33	undev	145,602.4	con	Colorado River above Diamond Creek near Peach Spring, AZ
174	094196783	NVBR	180	mixed	1,028.5	both	Las Vegas Wash below Flamingo Wash near Las Vegas, NV
175	09517000	CAZB	52	undev	1,536.8	both	Hassayampa River near Arlington, AZ
176	09522000	NSQN	76	undev	249,077.6	both	Colorado River at N. International Boundary above Morelos Dam, AZ
177	10168000	GRSL	110	urb	45.1	both	Little Cottonwood Creek at Jordan River near Salt Lake City, UT
178	10171000	GRSL	79	mixed	3,510.7	tot	Jordan River at County Road 1700 South at Salt Lake City, UT
179	10350500	NVBR	111	mixed	1,600.8	both	Truckee River at Clark, NV
180	11060400	SANA	71	urb	11.9	both	Warm Creek near San Bernardino, CA
181	11074000	SANA	120	urb	1,438.8	con	Santa Ana River below Prado Dam, CA
181	11074000	SANA	120	urb	2,261.4	tot	Santa Ana River below Prado Dam, CA
182	11273500	SANJ	212	undev	1,383	both	Merced River at River Road Bridge near Newman, CA
183	11274538	SANJ	211	mixed	10.8	con	Orestimba Creek at River Road near Crows Landing, CA
183	11274538	SANJ	211	undev	203.6	tot	Orestimba Creek at River Road near Crows Landing, CA
184	11303500	SANJ	297	undev	7,347.5	con	San Joaquin River near Vernalis, CA
184	11303500	SANJ	297	mixed	13,511.3	tot	San Joaquin River near Vernalis, CA
185	11391100	SACR	35	mixed	1,285.5	unk	Sacramento Slough near Knights Landing, CA
186	11447360	SACR	112	urb	31.5	both	Arcade Creek near Del Paso Heights, CA
187	11447650	SACR	171	undev	23,723.9	unk	Sacramento River at Freeport, CA
188	12113390	PUGT	84	urb	461.1	both	Duwamish River at golf course at Tukwila, WA
189	12128000	PUGT	125	urb	11.3	both	Thornton Creek near Seattle, WA
190	12400520	NSQN	56	undev	60,373.2	both	Columbia River at Northport, WA
191	12464770	CCYK	91	ag	458.8	both	Crab Creek at Rocky Ford Road near Ritzville, WA
192	12471400	CCYK	55	ag	710.8	both	Lind Coulee Wasteway at State Road 17 near Warden, WA
193	12472380	CCYK	36	mixed	56.2	both	Crab Creek Lateral above Royal Lake near Othello, WA
194	12472900	NSQN	45	undev	96,333	both	Columbia River at Vernita Bridge near Priest Rapid Dam, WA

Table 3. Stream-water sites selected for trend analysis.-Continued
[Drainage areas rounded to 0.1 square mile; ag, greater than 50 percent agricultural land and less than or equal to 5 percent urban land; undev, less than or equal to 25 percent agricultural land and less than or equal to 5 percent urban land; urb, greater than 25 percent urban land and less than or equal to 25 percent agricultural land; mixed, all other combinations of agricultural, urban, and undeveloped land; tot, total drainage basin; con, contributing drainage basin; both, total and contributing drainage basins are the same; unk, the type of drainage basin is not known. See appendix 3 for additional site and basin

Fig. 1 index number	Station number	Study Unit' abbreviation (explained in table 2)	Number of samples considered apropriate for trend analysis	Drainage basin land- use class	Drainage area (square miles)	Type of drainage basin
195	12505450	CCYK	130	mixed	61.7	con

[^5]
Precision and Rounding

Water-quality data from different periods of time are rounded differently. Prior to April 1997, pesticide data reported by NWQL were rounded to a greater degree than data reported subsequently (U.S. Geological Survey, 1997). Inconsistent rounding has the potential to adversely affect trend analysis, especially for nonparametric trend approaches based on the ranks of the concentrations. Consequently, all pesticide concentrations in the trend dataset were rounded to the degree used for the pre-April 1997 data (table 4). The same rounding rules also were applied to the maxLT-MDL for water years 1994-2010 (table 1).

Determination of Reporting Levels

The types and values of the routine reporting level in effect at the time of sample analysis have been recorded in the data transmitted to NWIS only since 2001. The need to distinguish between routine reporting levels for nondetections and raised reporting levels for nondetections caused by matrix interference was anticipated for some types of analysis activities. In this report, the term "routine reporting level" refers to the "less than" concentration value used to report a pesticide nondetection in the absence of interference. The term "raised reporting level" is the "less than" concentration value used to report a pesticide nondetection in the presence of interference. (See section "Pesticides, Analytical Method, Reporting Levels, and Laboratory Quality-Control Programs.") A raised reporting level is always greater than routine reporting level (for a given period of time).

The types and values of routine reporting levels and the effective dates of their use were obtained from internal NWQL files. The values of the routine reporting levels used by NWQL were rounded to the precision listed in table 4 and joined to the trend data, nondetections in the trend data were classified as routine or raised, and time-series plots of reporting levels for pesticide nondetections were examined. Several aspects of data reporting were observed to change over time: (1) prior to December 1994, no information on reporting levels used; (2) a period of "overlap" as routine reporting levels changed; and (3) a few isolated reporting levels at concentration values less than routine reporting levels.

These issues were resolved as follows: (1) reporting levels for pre-December 1994 samples were inferred from the pattern and values of nondetections in the trend data for this period; (2) periods of overlapping routine reporting levels were identified by visual inspection of the time-series plots, and reporting levels misclassified as raised were manually corrected; and (3) unusually low reporting levels were attributed to data-management/data-editing errors and were changed to nondetections at routine reporting levels.

A time-series plot of reporting levels for nondetections of simazine in the original concentration data provided for all sites in the trend dataset is shown in the first panel of figure 2. Timeseries plots of reporting levels for nondetections in the original concentration data for all GCMS pesticides are provided in first panels of the figures in appendix 1.

Table 4. Precision of pesticide data reported by the National Water Quality Laboratory (U.S. Geological Survey, 1997).
[$\mu \mathrm{g} / \mathrm{L}$, microgram per liter; $<$, less than]

Pesticide concentration $(\boldsymbol{\mu g} / \mathrm{L})$	Data prior to April $\mathbf{1 9 9 7}$	Data during and after April 1997	Final rounding for trend analysis
	0.001	0.0001	0.001
<0.001	0.001	0.0001	0.001
0.001 to <0.01	0.001	0.0001	0.001
0.01 to <0.1	0.01	0.001	0.01
0.1 to <1	0.1	0.01	0.1
1 to <10	1	0.1	1
10 to <100	10	1	10
100 to <1000			

Figure 2. Example time-series plots of nondetections (of simazine) for all sites in the trend dataset showing (1) original reporting levels; (2) rounded reporting levels and, for routine nondetections, reporting levels reassigned to the maximum value of the long-term method detection level (maxLT-MDL); and (3) raised reporting levels adjusted for temporal changes in recovery.

Reassigning the Concentration Value for Routine Nondetections

Temporal changes in the types and magnitude of reporting levels used to report routine nondetections have the potential to adversely affect trend analysis because they introduce a temporal "structure" to the time series of routine nondetections. The temporal structure of routine nondetections was removed for trend analysis by "reassigning" the temporally inconsistent concentration value to a uniform, temporally consistent concentration value. The concentration value of all pesticide nondetections at routine reporting levels was reassigned to a concentration value equal to the maxLT-MDL for water years 1994-2010 (table 1). Pesticide nondetections at raised reporting levels were not reassigned to maxLT-MDL. For most but not all pesticides and time periods, reassigning the concentration value of routine nondetections to the maxLTMDL resulted in an increase in the nondetected "less than" concentration (appendix 1).

The maxLT-MDL was determined from records provided by NWQL (http://nwql.cr.usgs.gov/usgs/ltmdl/ltmdl.cfm). It is expected that the maxLT-MDL will be used as a temporally consistent, conservatively high estimate of the detection limit for some types of trend-analysis activities. Data users are reminded that the reporting level is not a detection limit and that changes in the reporting level reflect changes in the variability/precision of low-level quantification or policy changes, not changes in detection capability. A time-series plot of reporting levels for nondetections of simazine reassigned to maxLT-MDL and rounded according to the rules in this section for all sites in the trend dataset is shown in the second panel of figure 2.

Adjustment of Concentrations for Temporal Changes in Recovery

Temporal changes in the performance of the GCMS analytical method used to measure pesticide concentrations during 1992-2010 have the potential to mask true trends in environmental concentrations or to identify trends in environmental concentrations that are caused solely by trends in the performance of the GCMS method. Consequently, measured concentrations of pesticides were adjusted for temporal changes in analytical recovery (Martin and Eberle, 2011). Data and procedures for modeling temporal changes in recovery bias are summarized below.

Recovery of a pesticide compound in the analytical process is measured by analysis of "spiked" QC samples. "Spikes" are water samples where a known amount of pesticide is added to the water sample. Recovery is the measured concentration of the pesticide divided by the expected concentration and is expressed as a percentage. Both bias in recovery and variability of recovery are characteristics of method performance. Bias is the systematic error in the measurement process and results in measurements that differ
from the true (or expected) value in the same direction. Variability is the random error in the measurement process. Changes in the bias of recovery, however, were considered more important for trend analysis than changes in the variability of recovery.

A locally weighted scatterplot smoothing (lowess) procedure was used to fit a center smooth (Cleveland and McGill, 1985, p. 833; Helsel and Hirsch, 2002, p. 45-47) to a time series of pesticide recovery for 1,819 stream-water matrix spikes collected between 1992 and 2010. Temporal changes in lowess-modeled recovery of more than 50 percent were observed for 18 pesticides (Martin and Eberle, 2011, table 2). Measured concentrations of pesticides were adjusted to 100 percent recovery to compensate for changes in recovery over time. Concentrations were adjusted by dividing the measured concentration by the lowess-modeled recovery, where recovery was expressed as a fraction. Recovery-adjusted concentrations were rounded using the criteria in table 4.

Concentrations of nondetections at raised reporting levels also were adjusted to 100 percent recovery (third panel of fig. 2 and the figures in appendix 1). Some nondetections at raised reporting levels were downward adjusted to concentrations less than or equal to the maxLT-MDL. These recovery-adjusted nondetections were changed to routine nondetections at maxLT-MDL. Routine nondetections at maxLT-MDL were not adjusted for lowess-modeled recovery. Routine nondetections were not adjusted because adjustment would create a temporal structure to the time series of nondetections and defeat the original purpose of reassigning routine nondetections to the maxLT-MDL (see section "Reassigning the Concentration Value for Routine Nondetections").

Time-series plots of recovery-adjusted raised reporting levels for nondetections of simazine compared to unadjusted raised reporting levels for all sites in the trend dataset are shown in the third panel of figure 2 and for all GCMS pesticides in the third panels of the figures in appendix 1. A time-series plot of rounded, detected concentrations of simazine in relation to maxLT-MDL for all sites in the trend dataset is shown in the first panel of figure 3. Similar timeseries plots of rounded, detected concentrations for all GCMS pesticides are provided in the first panels of the figures in appendix 2 . Lowess-modeled recovery of simazine in streamwater matrix spikes is shown in the second panel of figure 3 and for all GCMS pesticides in the second panels of the figures in appendix 2 . Time-series plots of recovery-adjusted concentrations of simazine at White River at Hazleton, Indiana, compared to unadjusted concentrations are shown in the third panel of figure 3 and for all GCMS pesticides in the third panels of the figures in appendix 2.

Figure 3. Example time-series plots of (1) rounded concentrations (of simazine) in relation to the maximum value of the long-term method detection level (maxLT-MDL) for all sites in the trend dataset; (2) modeled temporal changes in recovery; and, (3) for detections at White River at Hazleton, IN, a comparison of recovery-adjusted versus unadjusted concentrations.

Identification of Samples Considered Inappropriate for Trend Analysis

Many trend-analysis approaches require the removal of samples collected too frequently in time. Samples collected too frequently in time typically have highly correlated, redundant information that is inappropriate for use in trend analyses. At some sites, samples were collected frequently during periods of storm runoff to characterize changes in pesticide concentrations during storm runoff. This storm-sampling strategy resulted in a series of samples at the site that, for some samples, differed only days, hours, or even minutes in time.

In view of the sampling strategies used since 1992, an approximately weekly sampling frequency was considered the maximum frequency for a national trend analysis of these data. All samples at a site were assigned to calendar weeks (Sunday through Saturday). If two or more samples were collected during the same calendar week, only the sample collected closest in time to noon Wednesday was retained for trend analysis. This procedure identified 844 samples that were collected too frequently and, hence, are considered inappropriate for trend analysis. All samples, however, were retained in the trend dataset because they have uses beyond trend analysis (for example, load calculations or toxicity assessments). Samples considered appropriate for trend analysis are identified by the variable "trend = KEEP" in the dataset (appendix 4).

Dataset for Trend Assessment

The site- and sample-selection criteria described in the preceding sections produced a dataset of 21,988 pesticide samples at 212 stream-water sites (table 3). Only 21,144 pesticide samples, however, are considered appropriate for trend analysis. Tab-delimited American Standard Code for Information Interchange (ASCII) data files and metadata are provided in appendixes 3-5. Data for stream-water sites and their drainage basins are provided in appendix 3, data for pesticide concentrations in stream-water samples are provided in appendix 4 , and data for pesticides selected for trend analysis ${ }^{8}$ are provided in appendix 5 .

Summary

This report provides a water-quality dataset of 44 commonly used pesticides and 8 pesticide degradates suitable for a national assessment of pesticide trends in streams and rivers of the United States. Water-quality samples collected from

[^6]January 1992 through September 2010 at stream-water sites of the U.S. Geological Survey (USGS) National Water-Quality Assessment (NAWQA) Program and the National Stream Quality Accounting Network (NASQAN) were compiled, reviewed, selected, and prepared for trend analysis. The principal steps in data review for trend analysis were to (1) identify analytical schedule, (2) verify sample-level coding, (3) exclude inappropriate samples or results, (4) review pesticide detections per sample, (5) review high pesticide concentrations, and (6) review the spatial and temporal extent of NAWQA pesticide data and selection of analytical methods for trend analysis. The principal steps in data preparation for trend analysis were to (1) select stream-water sites for trend analysis, (2) round concentrations to a consistent level of precision for the concentration range, (3) identify routine reporting levels used to report nondetections unaffected by matrix interference, (4) reassign the concentration value for routine nondetections to the maximum value of the long-term method detection level (maxLT-MDL), (5) adjust concentrations to compensate for temporal changes in bias of recovery of the gas chromatography/mass spectrometry (GCMS) analytical method, and (6) identify samples considered inappropriate for trend analysis.

Samples analyzed at the USGS National Water Quality Laboratory (NWQL) by the GCMS analytical method were the most extensive in time and space and, consequently, were selected for trend analysis. Stream-water sites with 3 or more water years of data with six or more samples per year were selected for pesticide trend analysis. The selection criteria described in the report produced a dataset of 21,988 pesticide samples at 212 stream-water sites. Only 21,144 pesticide samples, however, are considered appropriate for trend analysis.

Acknowledgments

Many USGS employees contributed to this report: Jessica L. Thompson provided water-quality data from the NAWQA Data Warehouse; Sonja R. Abney, Jana Iverson, Leslie K. Kanagy, Janece C. Koleis, Chris E. Lindley, James E. Madsen, Dennis J. Markovchick, Lucinda K. Murtagh, Mary C. Olson, Scott D. Oppenheimer, Carmen G. Reed-Parker, Rhiannon C. Revello, Steven G. Smith, Max E. Stroppel, and Frank W. Wiebe analyzed the water samples for pesticide concentrations; Jonathon C. Scott provided software and programming support; David L. Lorenz, Aldo V. Vecchia, Dennis R. Helsel, Robert J. Gilliom, and Charles G. Crawford consulted on datapreparation procedures for trend analysis; Wesley W. Stone and Karen R. Ryberg provided technical reviews of early drafts of the report; and Bonnie Stich Fink edited the report.

References Cited

Cleveland, W.S., and McGill, Robert, 1985, Graphical perception and graphical methods for analyzing scientific data: Science, v. 229, p. 828-833.

Edwards, T.K., and Glysson, G.D., 1999, Field methods for measurement of fluvial sediment: U.S. Geological Survey Techniques of Water-Resources Investigations, book 3, chap. C2, 89 p. Available at http://pubs.usgs.gov/twri/ twri3-c2/.

Gilliom, R.J., Alley, W.M., and Gurtz, M.E., 1995, Design of the National Water-Quality Assessment Program-Occurrence and distribution of water-quality conditions: U.S. Geological Survey Circular 1112, 33 p. Available at http:// water.usgs.gov/pubs/circ/circ1112/.

Gilliom, R.J.; Barbash, J.E.; Crawford, C.G.; Hamilton, P.A.; Martin, J.D.; Nakagaki, Naomi; Nowell, L.H.; Scott, J.C.; Stackelberg, P.E.; Thelin, G.P.; and Wolock, D.M., 2006, The quality of our Nation's waters-Pesticides in the Nation's streams and ground water, 1992-2001: U.S. Geological Survey Circular 1291, 172 p. Available at http:// pubs.usgs.gov/circ/2005/1291/.

Gilliom, R.J., Hamilton, P.A., and Miller, T.L., 2001, The National Water-Quality Assessment Program—Entering a new decade of investigations: U.S. Geological Survey Fact Sheet 071-01, 6 p. Available at http://pubs.usgs.gov/fs/ fs-071-01/.

Helsel, D.R., and Hirsch R.M., 2002, Statistical methods in water resources: U.S. Geological Survey Techniques of Water-Resources Investigations, book 4, chap. A3, 510 p. Available at http://water.usgs.gov/pubs/twri/twri4a3/.

Hooper, R.P., Aulenbach, B.T., and Kelly, V.J., 2001, The National Stream Quality Accounting Network-A fluxbased approach to monitoring the water quality of large rivers: Hydrological Processes, v. 15, p. 1089-1106, accessed April 1, 2008, at http://www3.interscience.wiley.com/ journal/82002952/issue.

Lindley, C.E., Stewart, J.T., and Sandstrom, M.W., 1996, Determination of low concentrations of acetochlor in water by automated solid-phase extraction and gas chromatography with mass-selective detection: Journal of the AOAC International, v. 79, no. 4, p. 962-966.

Madsen, J.E., Sandstrom, M.W., and Zaugg, S.D., 2003, Methods of analysis by the U.S. Geological Survey National Water Quality Laboratory-A method supplement for the determination of fipronil and degradates in water by gas chromatography/mass spectrometry: U.S. Geological Survey Open-File Report 02-462, 11 p. Available at http:// nwql.usgs.gov/Public/pubs/OFR02-462/OFR02-462.html.

Martin, J.D., 1999, Quality of pesticide data for environmental water samples collected for the National Water-Quality Assessment Program, 1992-96, and examples of the use of quality-control information in water-quality assessments, accessed February 20, 2008, at http://water.usgs.gov/nawqa/ pnsp/pubs/qcsummary.html.

Martin, J.D., 2002, Variability of pesticide detections and concentrations in field replicate water samples collected for the National Water-Quality Assessment Program, 1992-97: U.S. Geological Survey Water-Resources Investigations Report 01-4178, 84 p. Available at http://pubs.usgs.gov/ wri/2001/wri01_4178/.

Martin, J.D., 2009, Sources and preparation of data for assessing trends in concentrations of pesticides in streams of the United States, 1992-2006: U.S. Geological Survey Scientific Investigations Report 2009-5062, 41 p. Available at http://pubs.usgs.gov/sir/2009/5062/.

Martin, J.D., and Eberle, Michael, 2011, Adjustment of pesticide concentrations for temporal changes in analytical recovery, 1992-2010: U.S. Geological Survey Data Series 630, 11 p., 5 app. Available at http://pubs.usgs.gov/ds/630/.

Martin, J.D., Gilliom, R.J., and Schertz, T.J., 1999, Summary and evaluation of pesticides in field blanks collected for the National Water-Quality Assessment Program, 1992-95: U.S. Geological Survey Open-File Report 98-412, 102 p. Available at http://water.usgs.gov/nawqa/pnsp/pubs/files/ ofr98412.pdf.

Martin, J.D., Stone, W.W., Wydoski, D.S., and Sandstrom, M.W., 2009, Adjustment of pesticide concentrations for temporal changes in analytical recovery, 1992-2006: U.S. Geological Survey Scientific Investigations Report 2009-5189, 23 p., 9 app. Available at http://pubs.usgs.gov/ sir/2009/5189/.

Mueller, D.K., Martin, J.D., and Lopes, T.J., 1997, Qualitycontrol design for surface-water sampling in the National Water-Quality Assessment Program: U.S. Geological Survey Open-File Report 97-223, 17 p. Available at http:// pubs.usgs.gov/of/1997/223/.

Oblinger Childress, C.J., Foreman, W.T., Connor, B.F., and Maloney, T.J., 1999, New reporting procedures based on long-term method detection levels and some considerations for interpretations of water-quality data provided by the U.S. Geological Survey National Water Quality Laboratory: U.S. Geological Survey Open-File Report 99-193, 19 p. Available at http://water.usgs.gov/owq/OFR_99-193/index. html.

Phillips, P.J., Ator, S.W., and Nystrom, E.A., 2007, Temporal changes in surface-water insecticide concentrations after the phaseout of diazinon and chlorpyrifos: Environmental Science \& Technology, v. 41, no. 12, p. 4246-4251.

Ryberg, K.R., Vecchia, A.V., Martin, J.D., and Gilliom, R.J., 2010, Trends in pesticide concentrations in urban streams in the United States, 1992-2008: U.S. Geological Survey Scientific Investigations Report 2010-5139, 101 p. Available at http://pubs.usgs.gov/sir/2010/5139/.

Shelton, L.R., 1994, Field guide for collecting and processing stream-water samples for the National Water-Quality Assessment Program: U.S. Geological Survey Open-File Report 94-455, 42 p. Available at http://pubs.usgs.gov/ of/1994/0455/report.pdf.

Sullivan, D.J., Vecchia, A.V., Lorenz, D.L., Gilliom, R.J., and Martin, J.D., 2009, Trends in pesticide concentrations in corn-belt streams, 1996-2006: U.S. Geological Survey Scientific Investigations Report 2009-5132, 75 p. Available at http://pubs.usgs.gov/sir/2009/5132/.
U.S. Geological Survey [variously dated], National field manual for the collection of water-quality data: U.S. Geological Survey Techniques of Water-Resources Investigations, book 9, chaps. A1-A9, accessed April 1, 2008, at http://water. usgs.gov/owq/FieldManual/.
U.S. Geological Survey, 1994, Description and guide for interpreting low-level data supplied by the NWQL for schedules 2001, 2010, 2050, and 2051: National Water Quality Laboratory Technical Memorandum 94-12, accessed April 1, 2008, at http://nwql.usgs.gov/Public/tech_memos/nwql.94$12 . \mathrm{html}$.
U.S. Geological Survey, 1997, Changes to the NWQL's data formatting and transmittal software: National Water Quality Laboratory Technical Memorandum 97-08, accessed April 1, 2008, at http://nwql.usgs.gov/Public/tech_memos/ nwql.97-08.html.
U.S. Geological Survey, 2006, National Stream Water Quality Accounting Network (NASQAN)—Station selection for fiscal years (FY) 1996-2000, accessed February 20, 2008, at http://water.usgs.gov/nasqan/progdocs/statables.html.
U.S. Geological Survey, 2010, NASQAN National Stream Water Quality Accounting Network, 2001-2007 NASQAN design information, accessed September 15, 2011, at http:// water.usgs.gov/nasqan/2001_2007_design_info.html.

Vecchia, A.V., Gilliom, R.J., Sullivan, D.J., Lorenz, D.L., and Martin, J.D., 2009, Trends in concentration and use of agricultural herbicides for corn belt rivers, 1996-2006: Environmental Science \& Technology, v. 43, no. 24, p. 9096-9102.

Zaugg, S.D., Sandstrom, M.W., Smith, S.G., and Fehlberg, K.M., 1995, Methods of analysis by the U.S. Geological Survey National Water Quality Laboratory-Determination of pesticides in water by C-18 solid-phase extraction and capillary-column gas chromatography/mass spectrometry with selected-ion monitoring: U.S. Geological Survey OpenFile Report 95-181, 49 p. Available at http://wwwnwql. cr.usgs.gov/Public/pubs/OFR95-181/OFR95-181.html.

Appendixes

The appendixes are separate documents, available for downloading at-
http://pubs.usgs.gov/ds/655/
Appendixes 1 and 2 are series of graphs; appendixes 3 through 5 are datasets and accompanying metadata.

Appendixes:

1. Time-series plots of nondetections of pesticides for all sites in the trend dataset showing (1) original reporting levels; (2) rounded reporting levels and, for routine nondetections, reporting levels reassigned to the maximum value of the long-term method detection level (maxLT-MDL); and (3) raised reporting levels adjusted for temporal changes in recovery.
2. Time-series plots of (1) rounded concentrations of pesticides in relation to the maximum value of the long-term method detection level (maxLT-MDL) for all sites in the trend dataset; (2) modeled temporal changes in recovery; and, (3) for detections at White River at Hazleton, IN, a comparison of recovery-adjusted versus unadjusted concentrations.
3. Data file of stream-water sites selected for trend analysis.
4. Data files of pesticide concentrations in stream-water samples.
5. Data file of pesticides selected for trend analysis.

[^0]: ${ }^{1}$ Although water-quality data for the period 1992-2006 were previously compiled and prepared for trend analysis by Martin (2009), this report repeats the compilation and preparation process for the entire period 1992-2010 rather than just for the recent, "updated" period 2007-10. This was done for several reasons related to data management and the development and application of recovery models used to prepare the data.

[^1]: ${ }^{2}$ The dataset provided in appendix 4 comprises 21,988 samples, 844 of which are considered inappropriate for trend analysis but are included in the dataset for uses other than trend analysis.

[^2]: ${ }^{4}$ The actual number of pesticides analyzed by the GCMS method depends on the NWQL analytical "schedule" used to request a pesticide analysis. A schedule is a suite of pesticides to be measured by one or more analytical methods. Four NWQL schedules used the GCMS method for analysis: 2001, 2010, 2003, and 2033. Schedules 2001 and 2010 differ only in the location of pesticide extraction-2001 is extracted in the laboratory, whereas 2010 is extracted in the field (Zaugg and others, 1995, p. 43-45). Schedules 2003 and 2033 are extracted in the laboratory but, compared to schedules 2001 and 2010, have a reduced number of pesticides analyzed by GCMS (table 1). NASQAN used schedules 2001 and 2010 exclusively from 1995 through October 2007 and used schedule 2033 extensively from November 2007 through 2010. The NAWQA Program used schedules 2001 and 2010 extensively from 1992 through October 2004, used schedule 2003 extensively from November 2004 through May 2005, and used schedule 2033 extensively from June 2005 through 2010. The pesticides "selected" for trend analysis are those measured in schedules 2001 and 2010.

[^3]: ${ }^{5}$ A water year is the period October 1 through September 30 and is named for the year in which it ends.
 ${ }^{6}$ The maxLT-MDL reported in table 1 is rounded according to the rules given later in the report.

[^4]: ${ }^{7}$ The NAWQA DWH is a dynamic database. Data and coding for samples and sites may be updated by local data managers as needed. Five sites identified as having sufficient data for trend analysis by Martin (2009) no longer have sufficient data for this report. The reason for the decrease in the number of samples is not known but likely is the result of changes to sample coding or other data-management activities. Similarly, data for certain individual samples in the 2009 report may not be included in the data appendixes in this report, and vice versa.

[^5]: 'NASQAN sites are coded "NSQN."

[^6]: ${ }^{8}$ The pesticides "selected" for trend analysis are those measured by the GCMS analytical method in schedules 2001 and 2010 (table 1). Martin (2009, appendix 1) determined that only pesticides analyzed by the GCMS analytical method were sufficiently extensive in time and space for a national assessment of trends.

